
Swift Parallel Scripting:
Workflows for Simulations

and Data Analytics at Extreme Scale

Michael Wilde
wilde@anl.gov

http://swift-lang.org

Domain of Interest

“Time”

“C
om

pl
ex

ity
”

D
im

en
si

on
s

1

2

3

Ti
m

e

S
ho

rt

 L
on

g

M
ul

tis
ca

le

R
es

ol
ut

io
n

C
oa

rs
e

Fi
ne

A
da

pt
iv

e

C
ou

pl
ed

 (&
 n

on
-li

ne
ar

) E
qu

at
io

ns

Fe
w

 M
an

y

E
ns

em
bl

e
M

em
be

rs

1

 M
an

y

E
rr

or
 A

na
ly

si
s

N
o

 Y

es

O
pt

im
iz

at
io

n

N
o

 Y

es

A
lg

or
ith

m
s

S
im

pl
e

C

om
pl

ex

Increasing capabilities in computational science

C
om

po
ne

nt
s

1

 M
an

y

Workflow needs

 Application Drivers
– Applications that are many-task in nature: parameters sweeps, UQ,

inverse modeling, and data-driven applications
– Analysis of capability application outputs
– Analysis of stored or collected data
– Increase productivity at major research instrumentation
– Urgent computing
– These applications are all many-task in nature

 Requirements
– Usability and ease of workflow expression
– Ability to leverage complex architecture of HPC and HTC systems

(fabric, scheduler, hybrid node and programming models),
individually and collectively

– Ability to integrate high-performance data services and volumes
– Make use of the system task rate capabilities from clusters to

extreme-scale systems
 Approach

– A programming model for programming in the large

3

When do you need HPC workflow?
Example application: protein-ligand docking for drug screening

(B)

O(100K)
drug

candidates

…then
hundreds of
detailed MD

models to find
10-20 fruitful
candidates for
wetlab & APS

crystallography

O(10) proteins
implicated in a
disease

= 1M
docking
tasks…

X

…

5

For protein docking workflow:

foreach p, i in proteins {
 foreach c, j in ligands {
 (structure[i,j], log[i,j]) =
 dock(p, c, minRad, maxRad);
}
scatter_plot = analyze(structure)

To run:

swift –site tukey,blues dock.swift

Expressing this many task workflow in Swift

The Swift runtime system has drivers and algorithms to efficiently support and aggregate diverse runtime
environments

Swift enables execution of simulation campaigns across
multiple HPC and cloud resources

6

Local datamar
kApps

Swift host: login node, laptop, …

Scripts

Data servers
Data servers

Data servers

Campus systems

Cloud resources

Petascale systems

National infrastructure

Encapsulation enables distributed
parallelism

Swift app() function
Interface definition

Application program

Typed Swift
data object

Files expected
or produced

by application program

Encapsulation is the key to transparent
distribution, parallelization, and automatic
provenance capture

Critical in a world of scientific, engineering, technical
and analytical applications

7

app() functions specify command line
arg passing

Swift app function
“predict()”

t seq d
t

lo
g

PSim application
-t -d-s-c

>pd
b

p
g

To run:
 psim -s 1ubq.fas -pdb p -t 100.0 -d 25.0 >log

In Swift code:

 app (PDB pg, Text log) predict (Protein seq,
 Float t, Float dt)
 {
 psim "-c" "-s" @pseq.fasta "-pdb" @pg
 "–t" temp "-d" dt;
 }

 Protein p <ext; exec="Pmap", id="1ubq">;
 PDB structure;
 Text log;

 (structure, log) = predict(p, 100., 25.);

Fasta
file

100.0 25.0

8

Swift in a nutshell

 Data types
string s = “hello world”;
int i = 4;
int A[];

 Mapped data types
type image;
image file1<“snapshot.jpg”>;

 Mapped functions
app (file o) myapp(file f, int i)
{ mysim "-s" i @f @o; }

 Conventional expressions
if (x == 3) {
 y = x+2;
 s = @strcat(“y: ”, y);
}

 Structured data
image A[]<array_mapper…>;

 Loops
foreach f,i in A {

 B[i] = convert(A[i]);

}

 Data flow
analyze(B[0], B[1]);

analyze(B[2], B[3]);

Swift: A language for distributed parallel scripting, J. Parallel
Computing, 2011

Implicitly parallel
 Swift is an implicitly parallel functional programming

language for clusters, grids, clouds and supercomputers
 All expressions evaluate when their data inputs are “ready”

 F() and G() are computed in parallel
– Can be Swift functions, or leaf tasks (executables or scripts in

shell, python, R, Octave, MATLAB, ...)
 r computed when they are done
 This parallelism is automatic
 Works recursively throughout the program’s call graph

(int r) myproc (int i)
{
 int f = F(i);
 int g = G(i);
 r = f + g;
}

Pervasive parallel data flow

Functional composition in Swift –
enables powerful parallel loops
1. Sweep(Protein pSet[])
2. {
3. int nSim = 1000;
4. int maxRounds = 3;
5. float startTemp[] = [100.0, 200.0];
6. float delT[] = [1.0, 1.5, 2.0, 5.0, 10.0];
7. foreach p, pn in pSet {
8. foreach t in startTemp {
9. foreach d in delT {
10. IterativeFixing(p, nSim, maxRounds, t, d);
11. }
12. }
13. }
14.}

12

10 proteins x 1000
simulations x

3 rounds x 2 temps x 5
deltas

= 300K tasks

Data-intensive example:
Processing MODIS land-use data

analyze

colorize
x317

landUse
x317

mark

Swift loops process hundreds of images in parallel

assemble

 Image processing pipeline for land-use data from the MODIS satellite
instrument…

Processing MODIS land-use data

foreach raw,i in rawFiles {

 land[i] = landUse(raw,1);

 colorFiles[i] = colorize(raw);

}

(topTiles, topFiles, topColors) =

 analyze(land, landType, nSelect);

gridMap = mark(topTiles);

montage =

 assemble(topFiles,colorFiles,webDir);

Example of Swift’s implicit parallelism:
 Processing MODIS land-use data

analyze

colorize
x317

landUse
x317

mark

Swift loops process hundreds of images in parallel

assemble

 Image processing pipeline for land-use data from the MODIS satellite
instrument…

Dataset mapping example: deep fMRI directory tree
type Study {

Group g[];
}
type Group {

Subject s[];
}
type Subject {

Volume anat;
Run run[];

}
type Run {

Volume v[];
}
type Volume {

Image img;
Header hdr;

}

On-Disk
Data
Layout Swift’s

in-
memory
data
model

Mapping
function
or script

16

Spatial normalization of functional MRI runs
reorientRun

reorientRun

reslice_warpRun

random_select

alignlinearRun

resliceRun

softmean

alignlinear

combinewarp

strictmean

gsmoothRun

binarize

reorient/01

reorient/02

reslice_warp/22

alignlinear/03 alignlinear/07alignlinear/11

reorient/05

reorient/06

reslice_warp/23

reorient/09

reorient/10

reslice_warp/24

reorient/25

reorient/51

reslice_warp/26

reorient/27

reorient/52

reslice_warp/28

reorient/29

reorient/53

reslice_warp/30

reorient/31

reorient/54

reslice_warp/32

reorient/33

reorient/55

reslice_warp/34

reorient/35

reorient/56

reslice_warp/36

reorient/37

reorient/57

reslice_warp/38

reslice/04 reslice/08reslice/12

gsmooth/41

strictmean/39

gsmooth/42gsmooth/43gsmooth/44 gsmooth/45 gsmooth/46 gsmooth/47 gsmooth/48 gsmooth/49 gsmooth/50

softmean/13

alignlinear/17

combinewarp/21

binarize/40

reorient

reorient

alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

Dataset-level workflow Expanded (10 volume) workflow
http://swift-lang.org

Complex scripts can be well-structured
programming in the large: fMRI spatial normalization script example

(Run snr) functional (Run r, NormAnat a,

 Air shrink)

{ Run yroRun = reorientRun(r , "y");

Run roRun = reorientRun(yroRun , "x");

Volume std = roRun[0];

Run rndr = random_select(roRun, 0.1);

AirVector rndAirVec = align_linearRun(rndr, std, 12, 1000, 1000, "81 3 3");

Run reslicedRndr = resliceRun(rndr, rndAirVec, "o", "k");

Volume meanRand = softmean(reslicedRndr, "y", "null");

Air mnQAAir = alignlinear(a.nHires, meanRand, 6, 1000, 4, "81 3 3");

Warp boldNormWarp = combinewarp(shrink, a.aWarp, mnQAAir);

Run nr = reslice_warp_run(boldNormWarp, roRun);

Volume meanAll = strictmean(nr, "y", "null")

Volume boldMask = binarize(meanAll, "y");

snr = gsmoothRun(nr, boldMask, "6 6 6");

}

(Run or) reorientRun (Run ir, string direction)
{
 foreach Volume iv, i in ir.v {
 or.v[i] = reorient(iv, direction);
 }
}

The Swift runtime system has drivers and algorithms to efficiently support and aggregate diverse runtime
environments

Swift’s distributed architecture is based on a
client/worker mechanism (internally named “coasters”)

19

Local datamar
kApps

Swift host: login node, laptop, …

Scripts

Data servers
Data servers

Data servers

Campus systems

Cloud resources

Petascale systems

National infrastructure

Worker architecture handles diverse environments

20

Summary of Swift main benefits

21

 Makes parallelism more transparent
● Implicitly parallel functional dataflow

programming
● Makes computing location more transparent
● Runs your script on multiple distributed sites

and
diverse computing resources (desktop to
petascale)

Makes basic failure recovery transparent
● Retries/relocates failing tasks
● Can restart failing runs from point of failure

Enables provenance capture
● Tasks have recordable inputs and outputs

BUT: Centralized evaluation can be a bottleneck
at extreme scales

22

Had this
(Swift/K):

For extreme scale, we need this
(Swift/T):

Swift/T: productive extreme-scale scripting

 Script-like programming with “leaf” tasks
– In-memory function calls in C++, Fortran, Python, R, … passing in-memory objects
– More expressive than master-worker for “programming in the large”
– Leaf tasks can be MPI programs, etc. Can be separate processes if OS permits.

 Distributed, scalable runtime manages tasks, load balancing, data movement
 User function calls to external code run on thousands of worker nodes

Swift
control
process

Swift
control
process

Parallel
evaluator

and
data
store

Swift worker process

C
C+
+

Fortran

Swift worker process

C
C+
+

Fortran

Swift worker process

C
C+
+

Fortran

MPI
Scripts

Parallel tasks in Swift/T

 Swift expression: z = @par=32 f(x,y);
 ADLB server finds 8 available workers

– Workers receive ranks from ADLB server
– Performs comm = MPI_Comm_create_group()

 Workers perform f(x,y)communicating on comm

LAMMPS parallel tasks

 LAMMPS provides a
convenient C++ API

 Easily used by Swift/T
parallel tasks

foreach i in [0:20] {
 t = 300+i;

 sed_command = sprintf("s/_TEMPERATURE_/%i/g", t);
 lammps_file_name = sprintf("input-%i.inp", t);

 lammps_args = "-i " + lammps_file_name;
 file lammps_input<lammps_file_name> =

 sed(filter, sed_command) =>
 @par=8 lammps(lammps_args);

}

Tasks with varying sizes packed into big MPI run
Black: Compute Blue: Message White: Idle

Swift/T-specific features

 Task locality: Ability to send a task to a process
– Allows for big data –type applications
– Allows for stateful objects to remain resident in the workflow
– location L = find_data(D);

int y = @location=L f(D, x);

 Data broadcast
 Task priorities: Ability to set task priority

– Useful for tweaking load balancing
 Updateable variables

– Allow data to be modified after its initial write
– Consumer tasks may receive original or updated values when

they emerge from the work queue

26

Wozniak et al. Language features for scalable distributed-
memory dataflow computing. Proc. Dataflow Execution
Models at PACT, 2014.

Swift/T: scaling of trivial foreach { } loop
100 microsecond to 10 millisecond tasks
on up to 512K integer cores of Blue Waters

27

Large-scale applications using Swift

 Simulation of super-
cooled glass materials

 Protein and biomolecule
structure and interaction

 Climate model analysis and
decision making for global
food production & supply

 Materials science at the
Advanced Photon Source

 Multiscale subsurface
flow modeling

 Modeling of power grid
for OE applications

All have published science
results obtained using
Swift

E

C

A

B

A

B

C

D

E

F
F

D

Benefit of implicit pervasive parallelism: Analysis
& visualization of high-resolution climate models
powered by Swift

http://swift-lang.org

 Diagnostic scripts for each
climate model (ocean,
atmospehere, land, ice)
were expressed in complex
shell scripts

 Recoded in Swift, the CESM
community has benefited
from significant speedups
and more modular scripts

Work of: J Dennis, M
Woitasek, S Mickelson, R
Jacob, M Vertenstein

Assess

Red indicates higher
statistical confidence in
data

Impact and Approach Accomplishments ALCF Contributions
• HEDM imaging and

analysis shows granular
material structure, of
non-destructively

• APS Sector 1 scientists
use Mira to process data
from live HEDM
experiments, providing
real-time feedback to
correct or improve in-
progress experiments

• Scientists working with
Discovery Engines LDRD
developed new Swift
analysis workflows to
process APS data from
Sectors 1, 6, and 11

• Mira analyzes
experiment in 10 mins
vs. 5.2 hours on APS
cluster: > 30X
improvement

• Scaling up to ~ 128K
cores (driven by data
features)

• Cable flaw was found
and fixed at start of
experiment, saving an
entire multi-day
experiment and valuable
user time and APS beam
time.

• In press: High-Energy
Synchrotron X-ray Techniques for
Studying Irradiated Materials, J-S
Park et al, J. Mat. Res.

• Big data staging with MPI-IO for
interactive X-ray science, J
Wozniak et al, Big Data
Conference, Dec 2014

• Design, develop, support,
and trial user engagement
to make Swift workflow
solution on ALCF systems a
reliable, secure and
supported production
service

• Creation and support of the
Petrel data server

• Reserved resources on Mira
for APS HEDM experiment
at Sector 1-ID beamline
(8/10/2014 and future
sessions in APS 2015 Run
1)

Boosting Light Source Productivity with Swift ALCF Data Analysis
H Sharma, J Almer (APS); J Wozniak, M Wilde, I Foster (MCS)

Analyze

Fi
x

Re-
analyze

Valid
Data!

2 3

4

5

1

Conclusion: parallel workflow scripting is practical, productive,
and necessary, at a broad range of scales

 Swift programming model demonstrated feasible and scalable
on XSEDE, Blue Waters, OSG, DOE systems

 Applied to numerous MTC and HPC application domains
– attractive for data-intensive applications
– and several hybrid programming models

 Proven productivity enhancement in materials, genomics,
biochem, earth systems science, …

 Deep integration of workflow in progress at XSEDE, ALCF

Workflow through implicitly parallel dataflow is productive for
applications and systems at many scales, including on highest-end
system

What’s next?

 Programmability
– New patterns ala Van Der Aalst et al (workflowpatterns.org)

 Fine grained dataflow – programming in the smaller?
– Run leaf tasks on accelerators (CUDA GPUs, Intel Phi)
– How low/fast can we drive this model?

 PowerFlow
– Applies dataflow semantics to manage and reduce energy usage

 Extreme-scale reliability
 Embed Swift semantics in Python, R, Java, shell, make

– Can we make Swift “invisible”? Should we?
 Swift-Reduce

– Learning from map-reduce
– Integration with map-reduce

GeMTC: GPU-enabled Many-Task Computing

Goals:
1) MTC support 2)
Programmability

3) Efficiency 4) MPMD on
SIMD

5) Increase concurrency to warp
level

Approach:
Design & implement GeMTC
middleware:

1) Manages GPU 2) Spread
host/device

3) Workflow system integration
(Swift/T)

Motivation: Support for MTC on all
accelerators!

Further research directions

 Deeply in-situ processing for extreme-scale
analytics

 Shell-like Read-Evaluate-Print Loop ala
iPython

 Debugging of extreme-scale workflows

Deeply in-situ analytics of a
climate simulation

The Swift Team

 Timothy Armstrong, Yadu Nand Babuji, Ian
Foster, Mihael Hategan, Daniel S. Katz, Ketan
Maheshwari, Michael Wilde, Justin Wozniak,
Yangxinye Yang

 2015 REU Summer Collaborators: Jonathan
Burge, Mermer Dupres, Basheer Subei, Jacob
Taylor

 Contributions by Ben Clifford, Luiz Gadelha,
Yong Zhao, Scott Krieder, Ioan Raicu,
Tiberius Stef-Praun

 Sincere thanks to the entire Swift user
community

36

U . S . D E PA RT M E N T O F

ENERGY

Swift gratefully acknowledges support from:

http://swift-lang.org

37

Parallel Computing, Sep
2011http://swift-lang.org

	Slide 1
	Slide 2
	Workflow needs
	Slide 4
	Expressing this many task workflow in Swift
	Slide 6
	Encapsulation enables distributed parallelism
	app() functions specify command line arg passing
	Swift in a nutshell
	Implicitly parallel
	Pervasive parallel data flow
	Slide 12
	Data-intensive example: Processing MODIS land-use data
	Processing MODIS land-use data
	Slide 15
	Dataset mapping example: deep fMRI directory tree
	Spatial normalization of functional MRI runs
	Slide 18
	Slide 19
	Slide 20
	Summary of Swift main benefits
	Slide 22
	Swift/T: productive extreme-scale scripting
	Parallel tasks in Swift/T
	LAMMPS parallel tasks
	Swift/T-specific features
	Slide 27
	Large-scale applications using Swift
	Slide 29
	Slide 30
	Slide 31
	What’s next?
	GeMTC: GPU-enabled Many-Task Computing
	Further research directions
	The Swift Team
	Slide 36
	Slide 37

