Argonn e°

ORATORY

Swift Parallel Scripting:
Workflows for Simulations
and Data Analytics at Extreme Scale

Michael Wilde
wilde@anl.gov

http://swift-lang.org

1ence

tational sc

ities in compu

Domain of Interest

o
w

Anxs|dwo),

Increasing capabil

“Time”

S

Workflow needs

Application Drivers

Applications that are many-task in nature: parameters sweeps, UQ,
inverse modeling, and data-driven applications

Analysis of capability application outputs

Analysis of stored or collected data

Increase productivity at major research instrumentation
Urgent computing

These applications are all many-task in nature

Requirements

Usability and ease of workflow expression

Ability to leverage complex architecture of HPC and HTC systems
(fabric, scheduler, hybrid node and programming models),
individually and collectively

Ability to integrate high-performance data services and volumes

Make use of the system task rate capabilities from clusters to
extreme-scale systems

Approach

Acprogramming model for programming in the large

When do you need HPC workflow?

Example application: protein-ligand docking for drug screening

O(100K)

O(10) proteins X drug &
implicated in a candidates

= 1M
docking
tasks...

...then
hundreds of
detailed MD

models to find

/ 10-20 fruitful

HO OH TS candidates for

wetlab & APS

— ’ .. crystallography

Expressing this many task workflow in Swift

For protein docking workflow:

foreach p, I In protelns {
foreach ¢, | 1n |ligands {
(structure[i,]], log[i,]]) =
dock(p, ¢, mnRad, nmaxRad);
}

scatter plot = analyze(structure)

To run:
swft —site tukey, bl ues dock. sw ft

o

Swift enables execution of simulation campaigns across
multiple HPC and cloud resources

="
i

Petascale systems

== XSEDE

Open Scitlance Gric_j
E————— National infrastructure

AN
b
ELocal dataj

k Swift host: login node, laptop, ... / Cloud reso;"‘;fg‘g‘;““"""'/

The Swift runtime system has drivers and algorithms to efficiently support and aggregate diverse runtime
environments

Encapsulation enables distributed
parallelism

Application program

Files expected
or produced
by application program

ncapsulation is the key to transparent
distribution, parallelization, and automatic
provenance capture

Critical in a world of scientific, engineering, technical

and analytical applications

app() functions specify command line
arg I

To run:
psim -s 1ubq.fas -pdb p -t 100.0 -d 25.0 >log

100.0 & 25.0 In Swift code:

app (PDB pg, Text log) predict (Protein seq,
Float t, Float dt)
{

psim "-c" "-s" @pseq.fasta "-pdb" @pg
Il_tll temp |I_dll dt;

PSim application }

Protein p <ext; exec="Pmap", id="1ubq">;
PDB structure;
Text log;

(structure, log) = predict(p, 100., 25.);

Swift in a nutshell

= Data types

string s = “hello world”;
int 1 = 4;
int A[];

" Mapped data types
type 1image;
image filel<%“snapshot.jpg”>;

= Mapped functions
app (file o) myapp(file f, int 1)
{ mysim "-s" i @f Qo; }

"= Conventional expressions
if (x == 3) {
y = X+2;

144

s = @strcat(My: 7, vy);

" Structured data

image A[]<array mapper..>;

" Loops
foreach f£,i1i in A {

B[1i] = convert(A[i1]);

= Data flow
analyze (B[0],
analyze (B[2],

Swift: A language for distributed parallel scripting,). Parallel

< Computing, 2011

Implicitly parallel

= Swift is an implicitly parallel functional programming
language for clusters, grids, clouds and supercomputers

" All expressions evaluate when their data inputs are “ready”

(tnt r) nmyproc (int 1)
{

int f = F(i);

int g =);

r =f + g;
}

" F() and G() are computed in parallel

— Can be Swift functions, or leaf tasks (executables or scripts in
shell, python, R, Octave, MATLAB, ...)

" r computed when they are done
* This parallelism is automatic
= \Works recursively throughout the program’s call graph

Pervasive parallel data flow

parent task a
spawns 5
child task b ™,

a writes data

d waits for
data

Q Task

Shared
L] data item

-.~ Tlask spawn
dependency
Data
dependency

Functional composition in Swift -

enables powerful parallel loops
Sweep(Protein pSet[])

{
InNt NSim = 1000:;

Int maxRounds = 3;
float startTemp[] =[100.0, 200.0];
floatdelT[]=[1.0, 1.5, 2.0, 5.0, 10.0];

foreach p, pn in pSet {
foreach t in startTemp {

foreach d in delT {
IterativeFixing(p, nSim, maxRounds, t, d);

}
} 10 proteins x 1000

} } simulations X
3 rounds X 2 temps x 5
deltas

_ ONNY LA~ ~

Data-intensive example:
Processing MODIS land-use data

landUse
x317

SGEEEEGEEEEGEEhGnbEnam e
SEOEEEEEREN0NNNN0000NEE e

Swift loops process hundreds of images in parallel

Image processing pipeline for land-use data from the MODIS satellite

instrument...

Processing MODIS land-use data

foreach raw, i Iin rawk | es {
land[i] = (raw 1) ;
colorFiles[iI] = (raw);
}

(topTiles, topFiles, topColors) =
(I and, | andType, nSel ect);

gridMvap = nmark(topTiles);
nont age =
assenbl e(topki | es,colorFi |l es, webDir);

Example of Swift’s implicit parallelism:

Processing MODIS land-use data
-

[landUse

x 317

ESESEEEEESENEEEEEENEES -
CTUTTTITILIITTITIIITL (] o

Swift loops process hundreds of images in parallel

[e

L[][] assemble

instrument...

o {,_—- -

Dataset mapping example: deep fMRI directory tree

- type Study { —
33 DBIC Group g[|;
El C’}%udy }
EI EGSUEI::]EH type Group {
- Bl anat Subject s[];
EI 'lh RN
OnDisk| | Hlvoume } < :
Data - | ~ gdvolme type Subject o
Layout ‘IE el Volume anat; ﬁ‘f"ﬂs
' Su;ggt Runrun[[, = memory
- =8 Subject } data
g ggﬁi type Run { model
Volume v[|;
_ }
type Volume {
Image img;
Header hdr;

Spatial normalization of functional MRI runs

reorient
reorient q A ﬁ '
alignlinear g

reslice

softmean

alignlinear

combine_war o
p ¢¢%?§§§\

- i‘ég 2T
binarize ' "'
N

7\
gsmooth ’ﬁf{ ‘\§\
ataset-level workflow Expanded (10 volume) workflow
o&f_ http://swift-lang.org

Complex scripts can be well-structured

programming in the large: fMRI spatial normalization script example

(Run or) reorientRun (Run ir, string direction)

(Run snr) functional (Run r, NormAnat a, {
Air shrink)

or.v[i] = reorient(iv, direction);
{ Run yroRun = reorientRun(r, "y")<‘ }
Run roRun = reorientRun(yroRun , "x");)

foreach Volume iv, i in ir.v {

Volume std = roRunl[0];

Run rndr = random_select(roRun, 0.1);

AirVector rndAirVec = align_linearRun(rndr, std, 12, 1000, 1000, "81 3 3");
Run reslicedRndr = resliceRun(rndr, rndAirVec, "o", "k");

Volume meanRand = softmean(reslicedRndr, "y", "null");

Air mnQAAIr = alignlinear(a.nHires, meanRand, 6, 1000, 4, "81 3 3");
Warp boldNormWarp = combinewarp(shrink, a.aWarp, mnQAAIr);

Run nr = reslice_warp_run(boldNormWarp, roRun);

Volume meanAll = strictmean(nr, "y", "null")

Volume boldMask = binarize(meanAll, "y");

snr = gsmoothRun(nr, boldMask, "6 6 6");
al

Swift’s distributed architecture is based on a
client/worker mechanism (internally named “coasters”)

="
i

== XSEDE

Open Scitlance Gric_j
National infrastructure

SWI ﬁ)’w I RESEARCH

\[:DMF‘UTI'-NG
JAL_ | CENTE
ELocal dataj
k Swift host: login node, laptop, ... /

The Swift runtime system has drivers and algorithms to efficiently support and aggregate diverse runtime
environments

Petascale systems

Campus systems

N
Worker architecture handles diverse environments

Swift file a = compute (b, c);

I compilation

<execute task="compute”> ...

I API

Coaster Client

I socket

Submit
Site

Karajan

O

e L Coaster Service

o P

o

0]

28

€% Worker Worker Worker Worker
o

Summary of Swift main benefits

Makes parallelism more transparent

 Implicitly parallel functional dataflow
programming

* Makes computing location more transparent

* Runs your script on multiple distributed site
and
diverse computing resources (desktop to
petascale)

Makes basic failure recovery transparent
® Retries/relocates failing tasks
® (Can restart failing runs from point of failur

Enables.provenance capture

—

BUT: Centralized evaluation can be a bottleneck
at extreme scales

Had this For extreme scale, we need this
(Swift/K): (Swift/T):
) " X 1.000
Data flow engine] - J - Y

500 tasks/s

! '
|- Task I Task l

Control tasks

L 500,000 tasks/s—

Centralized evaluation Distributed evaluation

Swift/T. productive extreme-scale scripting

data

 wvalwator | e | switworkera
:{‘?:‘:g-:gf:i%ftugun a n d g g FO rt ra n
+

python

A

powered

* Script-like programming with “leaf” tasks
— In-memory function calls in C++, Fortran, Python, R, ... passing in-memory objects
— More expressive than master-worker for “programming in the large”
— Leaf tasks can be MPI programs, etc. Can be separate processes if OS permits.
* Distributed, scalable runtime manages tasks, load balancing, data movement
* User function calls to external code run on thousands of worker nodes

Parallel tasks in Swift/T

Swift I Com piler Turbine

|: Load balancing / Data services (ADLB)]

Leaf tasks H‘ Notifications

 Worker | | Worker | | Worker | | worker | | Worker |

[Wurker] [Worker] [Worker | [Worker] [Worker]

comm comm
Dynamically-created Tasks may be placed
communicator with process or node

location constraints

" Swift expression: z = @par=32 f(x,Vy);
= ADLB server finds 8 available workers

— Workers receive ranks from ADLB server

— Performs comm = MPI Comm create group ()
= Workers perform £ (x, y) communicating on comm

LAMMPS parallel tasks

foreach i1 in [0:20] {
t = 300+1i;

sed command = sprintf("s/ TEMPERATURE /%i/g", t);
lammps file name = sprintf("input-%i.inp", t);
lammps args = "-1i " + lammps file name;
file lammps input<lammps file name> =

sed(filter, sed command) =>

@par=8 lammps (lammps args) ;

}

" LAMMPS provides a
convenient C++ API
= Easily used by Swift/T e

Pa rallel tasks Tasks with varying sizes packed |nto big MPI rt
Black: Compute Blue: Message White: Idl

Swift/T-specific features

Task locality: Ability to send a task to a process
— Allows for big data -type applications
— Allows for stateful objects to remain resident in the workflow
— location L = find data(D);
int y = @location=L f (D, x);
Data broadcast
Task priorities: Ability to set task priority
— Useful for tweaking load balancing
Updateable variables
— Allow data to be modified after its initial write

— Consumer tasks may receive original or updated values when
they emerge from the work queue

Wozniak et al. Language features for scalable distributed-
memory dataflow computing. Proc. Dataflow Execution
Models at PACT, 2014.

Swift/T: scaling of trivial foreach { } loop
100 microsecond to 10 millisecond tasks
on up to 512K integer cores of Blue Waters

10000M]
........................ 10ms
oMy e ideal
8 100M | - - 10ms
» oM | et - e e 1ms
% M | i ideal
E 0.1M ’ ;TS
---------------- . mS
0.01M j ideal
0.001M = 0.1ms
A NP A WO \g’b ® g'\’?« R
9 0O fL’\ S 67/ AF

CPU Cores

27

® 9 9

® © .

Large-scale applications using Swift

Simulation of super-
cooled glass materials

Protein and biomolecule
structure and interaction

Climate model analysis and
decision making for global
food production & supply

Materials science at the
Advanced Photon Source

Multiscale subsurface
flow modeling

Modeling of power grid
for OE applications

%II have published science

results obtained using
Swift

Red indicates higher statistical
confidence in data

.
Benefit of implicit pervasive parallelism: Analysis
& visualization of high-resolution climate models

powered by Swift

S;\LT ZONAL-#VE (GLD) b40.20th.trock . 1ce9.005 [1981-2008]
o Hae =

TH (km)

= Diagnostic scripts for each
climate model (ocean,
atmospehere, land, ice)
were expressed in complex
shell scripts

"= Recoded in Swift, the CESM
community has benefited
from significant speedups
and more modular scripts

Work of:] Dennis, M
Woitasek, S Mickelson, R

Jacob, M Vertenstgin ./ . vift-lana.ora

Boosting Light Source Productivity with Swift ALCF Data Analysis
H Sharma,] Almer (APS);] Wozniak, M Wilde, | Foster (MCS)

Impact and Approach Accomplishments ALCF Contributions
« HEDM imaging and Mira analyzes « Design, develop, support,
analysis shows experiment in 10 mins and trial user engagement
material struct : vs. 5.2 hours on APS to make Swift workflow
non-destructivegis== Cluster: > 30X solution on ALCF systems a
- APS Sector 1 scientists Improvement reliable, secure and
use Mira to process data < Scaling up to ~ 128K supported production
from live HEDM cores (driven by data service
experiments, providing features)
real-time feedback to - Cable flaw was found . Creation and support of the

correct or improve in-

progress eXperimentS and fixed at start of Petrel data server

experiment, saving an

« Scientists working with entire multi-day -
Discovery Engines LDRD experiment and valuable fReszIrD\éeEIErS?\;I)urces on Mira
developed new Swift user time and APS beam or experiment
analysis workflows to time. at Sector 1-ID beamline
process APS data from . In press: High-Energy (8/10/2014 ?29 itityren

bynchrotron X-ray IeChanueS for STOSSITUTI
atad Materiale 1-Q '

1 KL v -
_— L £y |

Sectors 1,6, and 1t

(4
g

e T 5 E e

Red indicates higher
statistical confidence in

Conclusion: parallel workflow scripting is practical, productive,
and necessary, at a broad range of scales

Swift programming model demonstrated feasible and scalable
on XSEDE, Blue Waters, OSG, DOE systems

Applied to numerous MTC and HPC application domains
— attractive for data-intensive applications
—and several hybrid programming models

Proven productivity enhancement in materials, genomics,
biochem, earth systems science, ...

Deep integration of workflow in progress at XSEDE, ALCF

Workflow through implicitly parallel dataflow is productive for
applications and systems at many scales, including on highest-end
system

What’s next?

" Programmability

— New patterns ala Van Der Aalst et al (workflowpatterns.org)
Fine grained dataflow - programming in the smaller?

— Run leaf tasks on accelerators (CUDA GPUs, Intel Phi)

— How low/fast can we drive this model?

PowerFlow

— Applies dataflow semantics to manage and reduce energy usage
Extreme-scale reliability

Embed Swift semantics in Python, R, Java, shell, make

— Can we make Swift “invisible”? Should we?

Swift-Reduce

— Learning from map-reduce

— Integration with map-reduce

GeMTC: GPU-enabled Many-Task Computing
Motivation: Support for MTC on all

Gyt lerators! Approach:

1) MTC support 2) Design & implement GeMTC
Programmability middleware:

3) Efficiency 4) MPMD on 1) Manages GPU 2) Spread
SIMD host/dewce

5) Incr | : PN
level Server {I}V/ Work Steallng m Server]

CPU Worker J PU Worker] j j _]/ CPU Worker J

[] ® j []

CPU :Norker J CPU \:Vorker] j j j j CPU ‘:Norker J
GeMTC Worker} GeMTC Worker] @ @ @ a GeMTC Worker}
GPU ePu | ||| || GPU
Node O Node 1 Node N

Further research directions

= Deeply in-situ processing for extreme-scale
analytics

= Shell-like Read-Evaluate-Print Loop ala
IPython

Deeply in-situ analytics of a
climate simulation

The Swift Team

" Timothy Armstrong, Yadu Nand Babulji, lan
Foster, Mihael Hategan, Daniel S. Katz, Ketan
Maheshwari, Michael Wilde, Justin Wozniak,
Yangxinye Yang

= 2015 REU Summer Collaborators: Jonathan
Burge, Mermer Dupres, Basheer Subel, Jacob

Taylor

= Contributions by Ben Clifford, Luiz Gadelha,
Yong Zhao, Scott Krieder, loan Raicu,
Tiberius Stef-Praun

" Sincere thanks to the entire Swift user
community

Swift gratefully acknowledges support from:

. DEPARTMENT OF

N
A
&

ESO%

@l THE UNIVERSITY OF

CHICAGO Argonne

NATIONAL LABORATORY

http://swift-lang.org

Parallel Computing 37 (2011) 633-652

Contents lists available at ScienceDirect

PARALLEL
COMPUTING

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Swift: A language for distributed parallel scripting

Michael Wilde *>*, Mihael Hategan ?, Justin M. Wozniak®, Ben Clifford ¢, Daniel S. Katz?,
lan Foster M€

4 Computation Institute, University of Chicago and Argonne National Laboratory, United States
> Mathematics and Computer Science Division, Argonne National Laboratory, United States

¢ Department of Computer Science, University of Chicago, United States

4 Department of Astronomy and Astrophysics, University of Chicago, United States

ARTICLE INFO ABSTRACT

Artide histOTy_-' Scientists, engineers, and statisticians must execute domain-specific application programs

Available online 12 July 2011 many times on large collections of file-based data. This activity requires complex orches-
tration and data management as data is passed to, from, and among application invoca-

Keywords: tions. Distributed and parallel computing resources can accelerate such processing, but

Swift

their use further increases programming complexity. The Swift parallel scripting language

gargllgl programming reduces these complexities by making file system structures accessible via language con-
Dcartl:ftllon\/% structs and by allowing ordinary application programs to be composed into powerful par-

allel scripts that can efficiently utilize parallel and distributed resources. We present
Swift’s implicitly parallel and deterministic programming model, which applies external
applications to file collections using a functional style that abstracts and simplifies distrib-
uted parallel execution.

. Parallel Computing, Se
http:/swift-lang.org 5011 P J P

	Slide 1
	Slide 2
	Workflow needs
	Slide 4
	Expressing this many task workflow in Swift
	Slide 6
	Encapsulation enables distributed parallelism
	app() functions specify command line arg passing
	Swift in a nutshell
	Implicitly parallel
	Pervasive parallel data flow
	Slide 12
	Data-intensive example: Processing MODIS land-use data
	Processing MODIS land-use data
	Slide 15
	Dataset mapping example: deep fMRI directory tree
	Spatial normalization of functional MRI runs
	Slide 18
	Slide 19
	Slide 20
	Summary of Swift main benefits
	Slide 22
	Swift/T: productive extreme-scale scripting
	Parallel tasks in Swift/T
	LAMMPS parallel tasks
	Swift/T-specific features
	Slide 27
	Large-scale applications using Swift
	Slide 29
	Slide 30
	Slide 31
	What’s next?
	GeMTC: GPU-enabled Many-Task Computing
	Further research directions
	The Swift Team
	Slide 36
	Slide 37

